
 1 

Sharing Code Between an Intellij Server Project and 
an Android Studio Client Project 

 
If you created your server in Intellij you will need to make some changes to your Intellij server 
project and your Android Studio client project to share the code that is common to both 
projects. There are two approaches you can take to sharing the code. 
 
The first approach is to create a shared module in your server project, copy the code to be 
shared into the new module, build a .jar file from the new module, and include the .jar file as a 
dependency in your Android client project. The disadvantage of this approach is that you will 
need to rebuild and re-copy your .jar file if you make changes to the shared code in the server 
project. 
 
The second approach is to create two new modules in your Android Studio Project, one for the 
Family Map Server and the other for the code to be shared by both your client and your server. 
You will then need to copy or move the code to the appropriate modules and move any other 
required files (web files, json files, database, etc) into the Android project. This approach will 
take more work up-front, but once your module dependencies are setup properly, you will be 
able to make changes to the code in the shared module and have those changes be 
immediately and automatically visible to both the client and the server modules. 
 
These instructions describe the first approach. However, the steps will help you see how to take 
the second approach if you choose to do that instead. 

Create a new shared module 
1. File -> New -> Module… 
2. Move the files that should be shared into the source directory of the new module 
3. Make the original project dependent on the new shared module: 

a. Open project settings: File -> Project Structure… 
b. Go to Modules, select the project (not the new shared module) and click ‘+’ (the 

plus symbol near the bottom of the dialog, not the one near the upper right 
corner) 

 



 2 

 
 

c. Select “Module Dependency…” 
d. Select the new module you created in step one and press OK until you return to 

the main window. 

Create a .jar artifact for the new module 
1. Open project settings: File -> Project Structure… 
2. Select “Artifacts” and click ‘+’ 
3. Select Jar -> From modules with dependencies… 
4. Select the new shared module from the Module file of the dialog box and press OK until 

you return to the main window 

Build the .jar file 
1. Build -> Build Artifacts… 
2. Select the jar file and click the “Build” action 

 



 3 

 
 

3. Find the .jar file in the “out/artifacts” directory of the project (you will need to search 
one or more directories down from “artifacts” to find the .jar file). 

Add the .jar File as a Dependency in your Android Client Project 
1. Switch to the project view in your Android project 

 

 
 

2. Copy the .jar file into the ‘libs’ folder of your project’s ‘app’ module directory (or if you 
have renamed the ‘app’ module, copy it into the ‘libs’ folder of the renamed module) 

a. You should not need to create a ‘libs’ folder. Your module should already have 
one. If it does not, create a ‘libs’ folder under the ‘app’ folder. 

 



 4 

 
 

3. Open project settings: File -> Project Structure and select ‘Dependencies’ 
 

 
 

4. Click the ‘+’ sign under “All Dependencies” and then select “Jar Dependency” 
5. Enter or select ‘libs/shared.jar’ (assuming your .jar file is named shared.jar) in the first 

drop down and select ‘implementation’ in the second. 
 

 
 

6. Press OK until you return to the main window. 



 5 

Troubleshooting 
With some versions of Android Studio, you may get an error when trying to build or run your 
Android project after completing the above steps. The error will say something about a Jetifier 
transform or conversion not working. If you receive this error, you should be able to correct it 
by adding the following to your gradle.properties file: 
 
 android.jetifier.blacklist=shared.jar 
 
If the .jar you imported has a different name, replace shared.jar with the name of the .jar file 
you are trying to share. Be careful with case of your jar file name. It has to match exactly. 


